Diameter of a Binary Tree #2
27
python/problem_543/README.md
Normal file
27
python/problem_543/README.md
Normal file
@@ -0,0 +1,27 @@
|
||||
# 543. Diameter of Binary Tree
|
||||
|
||||
Given the root of a binary tree, return the length of the diameter of the tree.
|
||||
|
||||
The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
|
||||
|
||||
The length of a path between two nodes is represented by the number of edges between them.
|
||||
|
||||
|
||||
|
||||
Example 1:
|
||||
|
||||
Input: root = [1,2,3,4,5]
|
||||
Output: 3
|
||||
Explanation: 3 is the length of the path [4,2,1,3] or [5,2,1,3].
|
||||
|
||||
Example 2:
|
||||
|
||||
Input: root = [1,2]
|
||||
Output: 1
|
||||
|
||||
|
||||
|
||||
Constraints:
|
||||
|
||||
The number of nodes in the tree is in the range [1, 104].
|
||||
-100 <= Node.val <= 100
|
||||
30
python/problem_543/solution1.py
Normal file
30
python/problem_543/solution1.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
# def __init__(self, val=0, left=None, right=None):
|
||||
# self.val = val
|
||||
# self.left = left
|
||||
# self.right = right
|
||||
class Solution:
|
||||
def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
|
||||
diameter = 0
|
||||
|
||||
def longest_path(node):
|
||||
# nonlocal to access the diameter when doing recursion
|
||||
nonlocal diameter
|
||||
# if no child
|
||||
if not node:
|
||||
return 0
|
||||
|
||||
# calculate the longest path for left and right
|
||||
left_longest = longest_path(node.left)
|
||||
right_longest = longest_path(node.right)
|
||||
|
||||
# check if its bigger than diameter
|
||||
diameter = max(diameter, left_longest + right_longest)
|
||||
|
||||
# add the edge to parent while returning
|
||||
return max(left_longest, right_longest) + 1
|
||||
|
||||
# do post-tree traversal
|
||||
longest_path(root)
|
||||
return diameter
|
||||
Reference in New Issue
Block a user