Compare commits
4 Commits
99362f49e0
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 16f71a7aeb | |||
| 8a7ef14760 | |||
| 33a14713eb | |||
| 8eafc93f2f |
27
python/problem_543/README.md
Normal file
27
python/problem_543/README.md
Normal file
@@ -0,0 +1,27 @@
|
||||
# 543. Diameter of Binary Tree
|
||||
|
||||
Given the root of a binary tree, return the length of the diameter of the tree.
|
||||
|
||||
The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
|
||||
|
||||
The length of a path between two nodes is represented by the number of edges between them.
|
||||
|
||||
|
||||
|
||||
Example 1:
|
||||
|
||||
Input: root = [1,2,3,4,5]
|
||||
Output: 3
|
||||
Explanation: 3 is the length of the path [4,2,1,3] or [5,2,1,3].
|
||||
|
||||
Example 2:
|
||||
|
||||
Input: root = [1,2]
|
||||
Output: 1
|
||||
|
||||
|
||||
|
||||
Constraints:
|
||||
|
||||
The number of nodes in the tree is in the range [1, 104].
|
||||
-100 <= Node.val <= 100
|
||||
30
python/problem_543/solution1.py
Normal file
30
python/problem_543/solution1.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
# def __init__(self, val=0, left=None, right=None):
|
||||
# self.val = val
|
||||
# self.left = left
|
||||
# self.right = right
|
||||
class Solution:
|
||||
def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
|
||||
diameter = 0
|
||||
|
||||
def longest_path(node):
|
||||
# nonlocal to access the diameter when doing recursion
|
||||
nonlocal diameter
|
||||
# if no child
|
||||
if not node:
|
||||
return 0
|
||||
|
||||
# calculate the longest path for left and right
|
||||
left_longest = longest_path(node.left)
|
||||
right_longest = longest_path(node.right)
|
||||
|
||||
# check if its bigger than diameter
|
||||
diameter = max(diameter, left_longest + right_longest)
|
||||
|
||||
# add the edge to parent while returning
|
||||
return max(left_longest, right_longest) + 1
|
||||
|
||||
# do post-tree traversal
|
||||
longest_path(root)
|
||||
return diameter
|
||||
25
python/problem_670/README.md
Normal file
25
python/problem_670/README.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# 670. Maximum Swap
|
||||
|
||||
You are given an integer num. You can swap two digits at most once to get the maximum valued number.
|
||||
|
||||
Return the maximum valued number you can get.
|
||||
|
||||
|
||||
|
||||
Example 1:
|
||||
|
||||
Input: num = 2736
|
||||
Output: 7236
|
||||
Explanation: Swap the number 2 and the number 7.
|
||||
|
||||
Example 2:
|
||||
|
||||
Input: num = 9973
|
||||
Output: 9973
|
||||
Explanation: No swap.
|
||||
|
||||
|
||||
|
||||
Constraints:
|
||||
|
||||
0 <= num <= 108
|
||||
28
python/problem_670/solution1.py
Normal file
28
python/problem_670/solution1.py
Normal file
@@ -0,0 +1,28 @@
|
||||
class Solution:
|
||||
def maximumSwap(self, num: int) -> int:
|
||||
# we need to track what is the highest number
|
||||
# from the right of current idx
|
||||
|
||||
# convert the int to str
|
||||
str_num = list(str(num))
|
||||
n = len(str_num)
|
||||
|
||||
max_right_idx = [0] * n
|
||||
# last idx will always be same
|
||||
max_right_idx[n - 1] = n - 1
|
||||
|
||||
for i in range(n - 2, -1, -1):
|
||||
# if the current number is greater than max of the right
|
||||
if str_num[i] > str_num[max_right_idx[i + 1]]:
|
||||
max_right_idx[i] = i
|
||||
# keep the max from right
|
||||
else:
|
||||
max_right_idx[i] = max_right_idx[i + 1]
|
||||
|
||||
# now we go from left to right
|
||||
for j in range(n):
|
||||
if str_num[j] < str_num[max_right_idx[j]]:
|
||||
str_num[j], str_num[max_right_idx[j]] = str_num[max_right_idx[j]], str_num[j]
|
||||
return int("".join(str_num))
|
||||
|
||||
return num
|
||||
Reference in New Issue
Block a user